Последние книги

Статистика сайта

Рейтинг пользователей: / 1
ХудшийЛучший 
Лукашин Ю.П. - Адаптивные методы краткосрочного прогнозирования временных рядов

Год выпуска: 2003
Автор: Лукашин Ю.П.
Издательство: Финансы и статистика
ISBN: 5-279-02740-5
Формат: PDF
Качество: OCR с ошибками
Количество страниц: 415
Язык: русский

Описание книги Лукашин Ю.П. - Адаптивные методы краткосрочного прогнозирования временных рядов: Посвящено построению статистических моделей с переменными параметрами для прогнозирования нестационарных временных рядов. Рассмотрены адаптивные модели полиномиальных и стохастических трендов, сезонных и циклических колебаний, гистограмм, модели семейства ARIMA, ARCH. Приводятся примеры прогнозирования курсов акций, валют, цен на золото. Материалы пособия апробированы на занятиях в МЭСИ, МИРБИС и других вузах. Для студентов, аспирантов, преподавателей экономических вузов, менеджеров и финансовых аналитиков.

Данное учебное пособие посвящено одному из современных направлений статистического анализа и прогнозирования временных рядов. Важность этого направления не вызывает сомнения, так как необходимость решения соответствующих задач с помощью адаптивных методов возникает сравнительно часто. Адаптивные методы могут применяться для прогнозирования показателей фондового рынка, денежных потоков, изменений ежедневных остатков на складах, в инструментальных кладовых, магазинах. С помощью этих же методов удается описать эволюцию изменения технико-экономических характеристик изделий и переменных параметров химических процессов, изучить поведение показателя частоты отказов оборудования в зависимости от его возраста. Наконец, названные методы полезны при анализе сезонных явлений. В ряде случаев эти методы могут с успехом применяться для прогнозирования макропоказателей. Методы адаптивного прогнозирования применяются там, где основной информацией для прогноза являются временные ряды.
Инструментом прогноза при адаптивном методе служит модель. Первоначальная оценка параметров этой модели основывается на данных базового (исходного) временного ряда. На основе новых данных, получаемых на каждом следующем шаге, происходит корректировка параметров модели во времени, их адаптация к новым, непрерывно изменяющимся условиям развития явления. Таким образом, модель постоянно «впитывает» новую информацию и приспосабливается к ней.
Адаптивные модели изолированных рядов при всей их простоте могут давать более надежные результаты, чем сложные
эконометрические системы уравнений. Так, при существенной перестройке некоторой экономической структуры (например, под влиянием научно-технического прогресса, изменений социально-политических условий и т.п.) эконометрическая модель с постоянными параметрами будет экстраполировать существенно устаревшие зависимости. Адаптивная модель в таких же условиях перманентно приспосабливается и учитывает эти изменения.
Здесь уместно сослаться на эксперимент Ч. Нельсона (1972 г.), в котором сравнивалась точность прогнозов, полученных на основе эконометрической модели, состоящей из нескольких уравнений, и достаточно простых адаптивных моделей, применявшихся для прогнозирования нескольких временных рядов. Оказалось, что для периода, использованного при оценивании параметров эконометрической модели, последняя показала лучшее приближение к данным наблюдения, чем адаптивные модели. Однако за пределом периода наблюдения с помощью эконометрической модели (с экзогенными реальными данными) полученные результаты хуже, чем с помощью адаптивных моделей.

Скачать бесплатно книгу Лукашин Ю.П. - Адаптивные методы краткосрочного прогнозирования временных рядов:

ссылка для скачивания


Добавить комментарий

Защитный код
Обновить

Поиск по сайту

Пользовательского поиска

Мы Вконтакте


Популярные книги